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Abstract

The isolation of the vibration due to moving loads using pile rows embedded in a poroelastic half-space is investigated in this

study. Based on Biot’s theory and integral transformmethod, the free field solution for a moving load applied on the surface of

a poroelastic half-space and the fundamental solution for a harmonic circular patch load applied in the poroelastic half-space

are derived first. Using Muki and Sternberg’s method and the fundamental solution for the circular patch load as well as the

obtained free field solution for the moving load, the second kind of Fredholm integral equations in the frequency domain

describing the dynamic interaction between pile rows and the poroelastic half-space is developed. Numerical solution of the

frequency domain integral equations and numerical inversion of the Fourier transform yield the time domain response of the

pile–soil system. Comparison of our results with some known results shows that our results are in a good agreement with

existing ones. Numerical results of this study show that velocity of moving loads has an important impact on the vibration

isolation effect of pile rows. The same pile row has a better vibration isolation effect for the lower speed moving loads than for

the higher speed ones. Also, the optimal length of piles for higher speed moving loads is shorter than that for lower speed

moving loads. Moreover, stiff pile rows tend to produce a better vibration isolation effect than flexible pile rows do.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration induced by railway traffic is a major concern for civil engineers as it can cause annoyance to residents
or even damage to adjacent structures. Generally, the effects of ground vibrations can be mitigated by two kinds
of vibration isolation methods: the active and the passive vibration isolation method. The active isolation system
is often used to isolate the vibration source from the ground and thus, it is usually installed around the vibration
source in a very close distance. The passive isolation system, on the other hand, is often used to reduce the energy
transported to structures and consequently, it usually surrounds the protected structure.

Roughly, there are two passive vibration isolation methods: the trench (open or unfilled) isolation method
and the pile (pile rows or sheet piles) isolation method. To date, many researches concerning vibration
isolation by trenches or piles have been conducted. For example, Emad and Manolis [1] utilized the boundary
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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element method (BEM) with constant elements to examine the efficiency of vibration reduction by open trench
with a rectangular or a circular cross-section. Beskos et al. [2] employed BEM with constant elements to
investigate the effect of the vibration reduction using open and infilled trenches. Dasgupta et al. [3] applied
three-dimensional (3-D) frequency domain BEM with the full space fundamental solution to analyze the
isolation of the vibration due to a rigid surface foundation subjected to harmonic loading by open and infilled
trenches. Avilles and Sanchez-Sesma [4] developed theoretical models to study the vibration reduction effect
behind a pile row when subjected to the SV wave and the Rayleigh wave. Kattis et al. [5,6] used the 3-D
frequency domain BEM to calculate the screening effectiveness of a pile row. Also, by means of the frequency
domain BEM, the screening effectiveness of four types of circular piles in a row against the vibration due to a
massless square foundation subjected to a harmonic vertical loading is studied by Tsai [7].

It should be noticed that previous researches concerning the vibration isolation in a half-space unanimously
treat the half-space as a single-phase elastic medium. Nevertheless, in many areas of southeast China, the
earth’s surface is covered by saturated soil. This is especially the case in Shanghai where a high-speed railway
is being established on the fluid-saturated porous soil. It is well known that for saturated soil, the pore fluid
plays a crucial role in the liquefaction and the shear failure of the soil. Thus, it is insufficient to treat the
saturated soil as a single-phase elastic medium. However, to date, for the vibration isolation problem in a
saturated poroelastic medium, no research has been carried out. To the knowledge of the authors, all the
existing researches concerning the dynamic response of pile embedded in a poroelastic half-space are limited to
the case of piles subjected to top harmonic loads. For example, based on Biot’s theory [8–10], Zeng and
Rajapakse [11] analyzed the steady-state dynamic response of an axially loaded elastic pile embedded in a
poroelastic half-space. Wang et al. [12] extended the problem to dynamic response of pile groups embedded in
a poroelastic half-space. More recently, Jin et al. [13] studied the time-harmonic response of a pile under
lateral loadings in a poroelastic half-space.

In this paper, a numerical method for evaluating the vibration isolation effect of pile rows embedded in a
poroelastic half-space subjected to a vertical moving load is developed on the basis of Biot’s theory and Muki
and Sternberg’s method [14,15]. Based on the proposed method, the influence of various parameters on the
vibration isolation effect of pile rows embedded in the poroelastic half-space is investigated numerically. It is
worth noting that the proposed approach in this study belongs to the semi-analytical category. Thus,
compared with the conventional domain discretization methods such as finite element method and BEM,
it can reduce CPU time significantly for the current full 3-D time-consuming problem.

2. The free wave field solution and the fundamental solution for a circular uniform patch load

2.1. Biot’s theory

In this study, the soil is considered as a half-space poroelastic medium, which is described by Biot’s theory
[8–10]. Equations of motion for the bulk material and the pore fluid of the porous medium are expressed in
terms of the solid displacement (ui) and the infiltration displacement (wi) as follows [8–10]:

mui;jj þ ðlþ a2M þ mÞuj;ji þ aMwj;ji ¼ r €ui þ rf €wi (1a)

aMuj;ji þMwj;ji ¼ rf €ui þm €wi þ bp _wi (1b)

where l and m are Lame constants of the solid skeleton, r is the bulk density of the porous medium, which is
equal to r ¼ (1�f)rs+frf (where rs is the density of the solid skeleton and rf is the density of the pore fluid),
f is the porosity of the poroelastic medium, m ¼ aNrf/f and aN is the tortuosity of the porous medium;
bp ¼ Z/k, Z and k represent the viscosity of the pore fluid and the permeability of the porous medium,
respectively, the superimposed dot above a variable denotes the time derivative.

According to Biot’s theory, constitutive relations for a homogeneous porous medium have the form [10]

sij ¼ 2m�ij þ ldije� adijpf (2a)

pf ¼ �aMeþMW (2b)
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where sij is the stress of bulk material, eij denotes the strain tensor of the solid skeleton, pf is the excess pore
fluid pressure and dij is the Kronecker delta. In Eq. (2b), the dilatation of the solid skeleton e and fluid volume
increment W are defined as

e ¼ ui;i; W ¼ �wi;i (3)

2.2. Free wave field solution due to the moving loads

In this study, the free wave field solution is defined as the solution of the moving load in the absence of the
pile rows. To establish Fredholm integral equations describing the dynamic interaction between the piles and
the half-space under moving loads, the free field solution for the moving load is required in advance.

For a moving load, axisymmetry is lost due to the orientation of the motion of the load. Thus, it is more
convenient to consider the moving load problem in a Cartesian coordinate system. To derive the general
solutions for Biot’s equations in the frequency domain, the Fourier transform with respect to time and
frequency is involved [16], which is defined as follows:

f̄ ðoÞ ¼
Z þ1
�1

f ðtÞe�iot dt; f ðtÞ ¼
1

2p

Z þ1
�1

f̄ ðoÞe�iot do (4)

where f(t) represents a function in the time domain, f̄ ðoÞ is the Fourier transform of f(t), t and o denote time
and frequency, respectively.

In the frequency domain, the governing equations of Biot’s theory can be reduced to three Helmholtz
equations for the scalar ðj̄f ; j̄sÞ and the vector potential ðw̄Þ corresponding to the P1 wave, the P2 wave and
the S wave of the porous medium as follows:

r2j̄f þ k2
f j̄f ¼ 0 (5a)

r2j̄s þ k2
s j̄s ¼ 0 (5b)

r2w̄þ k2
t w̄ ¼ 0 (5c)

where the vector potential ðw̄Þ satisfy ĉi;i ¼ 0 and the complex wavenumber kf, ks, kt are given by

k2
f ¼ ðb4Af � b3Þ=Af ; k2

s ¼ ðb4As � b3Þ=As; k2
t ¼ b2=m (6)

in which b1 ¼ a� rf o
2=b5, b2 ¼ ro2 � r2f o

4=b5, b3 ¼ rf o
2 � ab5, b4 ¼ b5=M, b5 ¼ mo2 � ibpo. In Eq. (6),

Af and As are two constants given by

A2
f ;s þ

b2 � ðlþ 2mÞb4 � b1b3
b1b4

Af ;s þ
ðlþ 2mÞb3

b1b4
¼ 0 (7)

The displacement and the pore pressure of the porous medium can be further represented by

ūi ¼ j̄f ;i þ j̄s;i þ eijkc̄k;j (8a)

p̄f ¼ Af j̄f ;ii þ Asj̄s;ii (8b)

The general solutions for the potentials can be derived through the Fourier transform with respect to the
horizontal coordinates. The Fourier transform for the two horizontal coordinates are defined as follows [16]:

f̂ ðkxÞ ¼

Z þ1
�1

f ðxÞe�ikxx dx; f ðxÞ ¼
1

2p

Z þ1
�1

f̂ ðkxÞe
ikxx dkx (9)

~f ðkyÞ ¼

Z þ1
�1

f ðyÞe�ikyy dy; f ðyÞ ¼
1

2p

Z þ1
�1

~f ðkyÞe
ikyy dky (10)

where kx, ky represent the two horizontal wavenumbers corresponding to x- and y-coordinates, respectively.
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Once the potentials for the half-space porous medium ð ~̄̂jf ;
~̄̂js and

~̄̂
ciÞ are determined, the frequency

wavenumber domain displacement ð ~̄̂uzÞ, the stresses ð ~̄̂szz;
~̄̂szx and ~̄̂szyÞ and the pore pressure ð ~̄̂pf Þ have the

following expressions [17]:

~̄̂uzðkx; ky; z;oÞ ¼ � Bðkx; ky;oÞgte
�gtz �Dðkx; ky;oÞgse

�gsz

� i½kyF ðkx; ky;oÞ � kxHðkx; ky;oÞ�e�gtz

~̄̂szzðkx; ky; z;oÞ ¼ � ðl� 2mÞ½Bðkx; ky;oÞk
2
f e
�gf z þDðkx; ky;oÞk

2
s e
�gsz�

� 2mi½ZF ðkx; ky;oÞgte
�gtz �Hðkx; ky;oÞgtkxe

�gtz� � a �̄̂pf

~̄̂szxðkx; ky; z;oÞ ¼ m½2ikxgf Bðkx; ky;oÞe�gf z � 2ikxgsDðkx; ky;oÞe�gsz

þ 2kxkyF ðkx; ky;oÞe�gtz þ ðk2
y � k2

x � g2t ÞHðkx; ky;oÞe�gtz�

~̄̂szyðkx; ky; z;oÞ ¼ m½�2ikxgf Bðkx; ky;oÞe�gf z � 2ikygsDðkx; ky;oÞe�gsz

þ ðk2
y þ k2

x þ g2t ÞF ðkx; ky;oÞe�gtz � 2kxkyHðkx; ky;oÞe�gtz�

~̄̂pf ðkx; ky; z;oÞ ¼ � Bðkx; ky;oÞAf k2
f e
�gtz �Dðkx; ky;oÞAsk

2
se
�gsz (11a 2 e)

where B(kx, ky,o), D(kx, ky,o), F(kx, ky,o) and H(kx, ky,o) are the arbitrary constants to be determined by
the boundary conditions, and gf, gs, gt have the following expressions:

g2f ¼ k2
x þ k2

y � k2
f ; g2s ¼ k2

x þ k2
y � k2

s ; g2t ¼ k2
x þ k2

y � k2
t (12)

in which roots of gf, gs, gt are chosen to satisfy Re(gf)X0, Re(gs)X0 and Re(gt)X0.
In this study, it is assumed that the moving load with a constant speed c and an oscillating frequency o0

(Fig. 1) is applied on the surface of the poroelastic half-space. The load moves along the positive direction of
the y-axis and the distance between the trace of the load and the y-axis is ds (Fig. 1). Also, the half-space
surface is assumed to be completely permeable. For the moving load applied over a rectangular area 2a� 2b,
the boundary conditions in the time–space domain are as follows:

szxðx; y; z; tÞ
��
z¼0
¼ 0 (13a)

szyðx; y; z; tÞ
��
z¼0
¼ 0 (13b)

pf ðx; y; z; tÞ
��
z¼0
¼ 0 (13c)

szzðx; y; z; tÞ
��
z¼0
¼ � qz½Hðxþ ds þ aÞ �Hðxþ ds � aÞ�

� ½Hðy� y0 þ b� ctÞ �Hðy� y0 � b� ctÞ�eio0t (13d)

where qz is the intensity of the distributed load, o0 the frequency of the moving load, H(*) the Heaviside step
function and y0 the y coordinate of the center of the distributed load at time t ¼ 0.

Performing a triple Fourier transform with respect to time and the two horizontal coordinates, respectively,
on Eq. (13), we have the following boundary condition in the frequency wavenumber domain:

~̄̂szxðkx; ky; 0;oÞ ¼ 0 (14a)

~̄̂szyðkx; ky; 0;oÞ ¼ 0 (14b)

~̄̂pf ðkx; ky; 0;oÞ ¼ 0 (14c)

~̄̂szzðkx; ky; 0;oÞ ¼ �8pqz

sinðkxaÞ

kx

sinðkybÞ

ky

eiðkxds�kyy0Þdðo� o0 þ kycÞ (14d)

where d(*) is the Dirac delta function.
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Fig. 1. Piles rows embedded in a poroelastic half-space to isolate the vibration due to a moving load.
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For a moving point load, the boundary conditions for szx, szy, pf are the same as those for the moving
rectangular distributed load, while the boundary condition for szz is as follows:

szzðx; y; z; tÞ
��
z¼0
¼ �Fzdðxþ dsÞdðy� y0 � ctÞeio0t (15)

Likewise, the boundary condition for ~̄̂szz in the frequency wavenumber domain is given by

~̄̂szzðkx; ky; 0;oÞ ¼ �2pFze
iðkxds�kyy0Þdðo� o0 þ ckyÞ (16)

Using Eqs. (11) and (14) or Eq. (16), the arbitrary constants B(kx, ky,o), D(kx, ky,o), F(kx, ky,o) and
H(kx, ky,o) can be determined. After determining the arbitrary constants, the free wave field due to the surface
moving load in the frequency wavenumber domain can be determined by Eq. (11). In view of Eq. (14), all the
variables in the frequency wavenumber domain for the moving distributed rectangular load can be expressed
in the following form:

~̄̂
Oðkx; ky; z;oÞ ¼ �8pqz

sinðkxaÞ

kx

sinðkybÞ

ky

eiðkxds�kyy0Þdðo� o0 þ kycÞ

� �
~̄̂
O
�

ðkx; ky; z;oÞ (17)

where
~̄̂
O
�

ðkx; ky; z;oÞ is the solution for a variable corresponding to a unit boundary value ~̄̂szz in Eq. (14d).
For the moving point load, we have the similar expression

~̄̂
Oðkx; ky; z;oÞ ¼ �2pFze

iðkxds�kyy0Þdðo� o0 þ ckyÞ
� � ~̄̂

O
�

ðkx; ky; z;oÞ (18)

Performing the inverse Fourier transform with respect to the two horizontal wavenumbers and using the
property of the delta function, the frequency domain free field solution for the moving distributed rectangular
load has the form

Ōðx; y; z;oÞ ¼ �
2qz

p
sin½bðo0 � oÞ=c�

o0 � o
eiðo0�o=cÞðy�y0Þ

Z þ1
�1

sinðkxaÞ

kx

^̄O
�

kx;
o0 � o

c
; z;o

� �
eikxðxþdsÞ dkx (19)
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For the moving point load, the frequency domain free field solution for all the variables is represented by

Ōðx; y; z;oÞ ¼ �
F z

2pc
eiðo0�oÞ=cðy�y0Þ

Z þ1
�1

^̄O
�

kx;
o0 � o

c
; z;o

� �
eikxðxþdsÞ dkx (20)

2.3. The fundamental solution for a harmonic circular uniform patch load

To establish the integral equations for the pile rows, the frequency domain fundamental solution for a
uniform vertical patch load applied in the poroelastic half-space is required. As the problem for a poroelastic
half-space subjected to a uniform vertical patch load over a circular area with a radius R (Fig. 2) is
axisymmetric with respect to the center of the circular area, thus, it is more convenient to consider the problem
in the cylindrical coordinate system (r, y, z).

In the cylindrical coordinate system (r, y, z), the governing equations of Biot’s theory can be reduced to
Helmholtz equations for the scalar and the vector potential corresponding to the P1 wave, the P2 wave and the
S wave of the porous medium. The Helmholtz equations for the scalar in the cylindrical coordinate system are
the same as Eqs. (5a) and (5b), and the vector potential for the axisymmetric case can be reduced to a scalar
potential Z̄, which fulfill the following Helmholtz equation:

r2Z̄þ k2
t Z̄ ¼ 0 (21)

The displacement of the solid skeleton can be expressed by the potentials as follows:

ūr ¼
qj̄f

qr
þ

qj̄s

qr
þ

q2Z̄
qrqz

(22a)

ūz ¼
qj̄f

qz
þ

qj̄s

qz
�

1

r

q
qr

r
qZ̄
qr

	 

(22b)

And the pore pressure has the same expression as Eq. (8b).
To derive the general solution for the porous medium in the cylindrical coordinate system (r, y, z), the

Hankel integral transform is required [14,15]. The mth-order Hankel transform is defined by [16]

_

f
ðmÞ
ðxÞ ¼

Z þ1
0

rf ðrÞJmðxrÞ dr; f ðrÞ ¼

Z þ1
0

x
_

f
ðmÞ
ðxÞJmðxrÞ dx (23)

where J ðnÞm denotes the mth-order first kind of Bessel function and x denotes the Hankel transform parameter.
z

2R

o

D1

D2

h

a poroelastic half
space 

x

y

Fig. 2. Vertical uniform circular patch load applied in a poroelastic half-space.
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In terms of the potentials and using the Hankel integral transform with respect to the radial coordinate r,
the expressions for the displacements, stresses and the pore pressure in the frequency–wavenumber domain are
expressed as follows [18]:

ū
_½0�

z ðx; z;oÞ ¼ df ½Aðx;oÞedf z � Bðx;oÞe�df z� þ ds½Cðx;oÞedsz �Dðx;oÞe�dsz�

þ x2½Eðx;oÞedtz þ F ðx;oÞe�dtz�

ū
_½1�

r ðx; z;oÞ ¼ � x½Aðx;oÞedf z þ Bðx;oÞe�df z þ Cðx;oÞedsz þDðx;oÞe�dsz�

þ xdt½Eðx;oÞedtz � F ðx;oÞe�dtz�

p̄
_½0�

f ðx; z;oÞ ¼ � Af k2
f ½Aðx;oÞe

df z þ Bðx;oÞe�df z� � Ask
2
s ½Cðx;oÞe

dsz þDðx;oÞe�dsz�

s̄
_½0�

zz ðx; z;oÞ ¼ ½2md
2
f þ lðd2f � x2Þ � aAf k2

f �½Aðx;oÞe
df z þ Bðx;oÞe�df z�

þ ½2md2s þ lðd2s � x2Þ � aAsk
2
s �½Cðx;oÞe

dsz þDðx;oÞe�dsz�

þ 2mdtx
2
½Eðx;oÞedtz � F ðx;oÞe�dtz�

s̄
_½1�

zr ðx; z;oÞ ¼ � 2mx df ½Aðx;oÞedf z � Bðx;oÞe�df z� þ ds½Cðx;oÞedsz �Dðx;oÞe�dsz�

�

þ
k2

t

2
½Eðx;oÞedtz þ F ðx;oÞe�dtz�

�
(24a 2 e)

where A(x,o)–F(x,o) are the arbitrary constants, df, ds and dt are complex numbers related to the vertical
wavenumbers for the P1, the P2 and the S wave of the porous medium and

df ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

f

q
; ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

s

q
; dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

t

q
(25)

Note that the real part of da, a ¼ f, s, t in Eq. (25) should be always non-negative.
For the D1 domain (Fig. 2), the general solution in Eqs. (24a–e) have six unknown constants to be

determined, while for the domain D2 (Fig. 2), due to the bounded condition at infinity, only three constants
remain. For a permeable surface, the boundary conditions of the surface of D1 are as follows (Fig. 2):

s̄
_½0�

zz ðx; 0;oÞ ¼ 0; s̄
_½1�

zr ðx; 0;oÞ ¼ 0; p̄
_½0�

f ðx; 0;oÞ ¼ 0 (26)

At the interface between the D1 and the D2 domain, the continuity conditions are as follows (Fig. 2):

ū
_½1�

r ðx; h
�;oÞ ¼ ū

_½1�

r ðx; h
þ;oÞ; ū

_½0�

z ðx; h
�;oÞ ¼ ū

_½0�

z ðx; h
þ;oÞ,

w̄
_½0�

z ðx; h
�;oÞ ¼ w̄

_½0�

z ðx; h
þ;oÞ; p̄

_½0�

f ðx; h
�;oÞ ¼ p̄

_½0�

f ðx; h
þ;oÞ,

s̄
_½0�

zz ðx; h
þ;oÞ � s̄

_½0�

zz ðx; h
�;oÞ ¼ �

RJ1ðRxÞ
Ax

; s̄
_½1�

zr ðx; h
�;oÞ ¼ s̄

_½1�

zr ðx; h
þ;oÞ (27)

The nine unknown constants for the D1 and the D2 domain can be calculated by nine linear algebraic
equations (26) and (27). Substitution of the obtained constants into Eq. (24) and inversion of the Hankel
transform give the frequency domain fundamental solution.

3. Fredholm integral equations describing dynamic interaction between piles and the poroelastic half-space

As shown in Fig. 1, the pile rows embedded in the poroelastic half-space is used to isolate the vibration
generated by a moving load. The number of the total pile is m ¼

PK
k¼1nk, where K, nk denote the number of

pile rows and the number of the piles in the kth row. The spacing between two neighboring piles in each pile
row is denoted by s. Also, it is assumed that each pile has the same diameter d (d ¼ 2R) and the same length L

(d/L51). A vertical moving load with a constant speed c and an oscillating frequency o0 is acted on the
surface of the poroelastic half-space and moves along the positive direction of the y-axis (Fig. 1).
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When the pile-half-space system is subjected to a vertical moving load, generally, the pile will experience
both vertical and horizontal response. However, as the influence of the horizontal interaction between
the pile–soil system is relatively smaller, the horizontal interaction between piles and the half-space is
neglected in this paper. Thus, only the vertical interaction between the piles and the half-space is considered
in the paper. Moreover, the exact hydraulic boundary condition on the pile–soil interface is ignored in this
study [19].

Following Muki and Sternberg [14,15] and Pak and Jennings [20], the current problem is decomposed into
two sub-problems: an extended poroelastic half-space and multiple fictitious piles. The response of the
poroelastic half-space is governed by Biot’s theory, while the fictitious pile is described by the one-dimensional
bar vibration theory. The decomposition procedure is illustrated in Fig. 3 by the ith pile of the pile rows.

For the fictitious piles, Young’s modulus ðE
ðiÞ
pnÞ and the density ðrðiÞpnÞ of the fictitious ith pile are expressed

as [14,15]

E
ðiÞ
pn ¼ EðiÞp � Es; rðiÞpn ¼ rðiÞp � r; i ¼ 1; 2; . . . ;m (28)

where EðiÞp and Es are Young’s modulus for the ith pile and the poroelastic half-space, Es ¼ mð3lþ 2mÞ=ðlþ mÞ,
rðiÞp , r are the densities for the ith pile and the poroelastic half-space, while E

ðiÞ
pn and rðiÞpn are Young’s modulus

and the density of the ith fictitious pile.

It is assumed that the axial force of the ith fictitious pile is N̄
ðiÞ

n
ðz;oÞ and the vertical distributed load along

the ith fictitious pile is q̄ðiÞz ðz;oÞ (Fig. 3(b)). The top and the bottom of the ith fictitious pile are subjected

to forces N̄
ðiÞ

n
ð0;oÞ; N̄

ðiÞ

n
ðL;oÞ, respectively. The poroelastic half-space are subjected to the following loads

(Fig. 3(a)): q̄ðiÞz ðz;oÞ that is distributed over the region occupied by the ith pile; N̄
ðiÞ

n
ð0;oÞ=AðiÞ and

N̄
ðiÞ

n
ðL;oÞ=AðiÞ which are applied to the circular areaPðiÞ0 andPðiÞL , respectively. Note that A(i) denotes the cross-

section area of the ith pile.
z

o

the extended half
 space

z

L

z

(i)Π0

(i)Π�

(i)ΠL

i-th fictitious
pile  

(i)Πz

x

N (i)(0,�)/A(i)

y

*

q (i)(z,�)/A(i)
*

N (i)(L,�)/A(i)
*

N (i)(L,�)
*

q (i)(z,�)
z

N (i)(0,�)
*

�

Fig. 3. The model for the decomposition of the pile-half-space system.
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For the ith fictitious pile, the displacement ūðiÞzp�ðz;oÞ, the distributed vertical force q̄ðiÞz ðz;oÞ and the axial
force satisfy the following relations:

q̄ðiÞz ðz;oÞ ¼ �
dN̄
ðiÞ

n
ðz;oÞ
dz

� rðiÞp�A
ðiÞo2ūðiÞzp�ðz;oÞ; i ¼ 1; 2; . . . ;m (29a)

ūðiÞzp�ðz;oÞ ¼ ūðiÞzp�ð0;oÞ þ
1

EðiÞp�A
ðiÞ

Z z

0

N̄
ðiÞ

� ðZ;oÞdZ; i ¼ 1; 2; . . . ;m (29b)

in which ūðiÞzp�ðz;oÞ is the vertical displacement of the ith pile.
The vertical strain of the extended half-space along the axis of the ith pile is composed of two parts: the first

part is due to the free wave field, while the second part is due to the force applied to the extended half-space by
the fictitious piles. Thus, the vertical strain of the extended half-space along the axis of the ith pile can be
written as

�̄ðiÞzs ðz;oÞ ¼ �̄
ðiÞ
zf ðz;oÞ þ

Xm

j¼1

N̄
ðjÞ

� ð0;oÞ�̄
ðGÞ
z ðrij ; 0; z;oÞ � N̄

ðjÞ

� ðL;oÞ�̄
ðGÞ
z ðrij ;L; z;oÞ

�

�

Z Lj

0

q̄ðjÞz ðz;oÞ�̄
ðGÞ
z ðrij ; z; z;oÞdz

�
; i ¼ 1; 2; . . . . . . ;m (30)

where the superscript and subscript i, j denote the ith and the jth pile, respectively, �̄ðiÞzf ðz;oÞ is the free field

vertical strain at the axis of the ith pile, which is determined by the free field frequency domain solution of the

moving load, and �̄ðGÞz ðrij ; z; z;oÞ represents the vertical strain at the center of PðiÞz due to a unit patch load

applied at PðjÞz (Fig. 3(a)) and rij is the horizontal distance between the axis of the ith and jth pile. It is worth

noting that for the case i ¼ j, rij is vanishing.
Using Eqs. (29) and (30), the following relation is obtained:

�̄ðiÞzs ðz;oÞ ¼ �̄
ðiÞ
zf ðz;oÞ � N̄

ðiÞ

� ðz;oÞ½�̄
ðGÞ
z ðrii; z

þ; z;oÞ � �̄ðGÞz ðrii; z
�; z;oÞ�

�

Z Li

0

N̄
ðiÞ

� ðz;oÞ
q�̄ðGÞz ðrii; z; z;oÞ

qz
dzþ rðiÞp�A

ðiÞo2

Z Li

0

ūðiÞzp�ðz;oÞ�̄
ðGÞ
z ðrii; z; z;oÞ dz

þ
XmðjaiÞ

j¼1

�

Z Li

0

N̄
ðjÞ

� ðz;oÞ
q�̄ðGÞz ðrij ; z; z;oÞ

qz
dzþ rðjÞp�A

ðjÞo2

Z Li

0

ūðjÞzp�ðz;oÞ�̄
ðGÞ
z ðrij ; z; z;oÞ dz

� �

i ¼ 1; 2; . . . ;m (31)

where �̄ðGÞz ðrii; z�; z;oÞ, �̄ðGÞz ðrii; zþ; z;oÞ denote the vertical strain of the poroelastic half-space at the center of
PðiÞz of the ith pile when the patch load PðiÞx approaches PðiÞz from up and down side, respectively.

In this study, the compatibility condition between the ith pile and the poroelastic half-space is fulfilled by
requiring the vertical strain of the ith fictitious pile and that of the extended half-space along the axis of the ith
fictitious pile to be equal

�̄ðiÞzp�ðz;oÞ ¼ �̄
ðiÞ
zs ðz;oÞ; 0pzpL; i ¼ 1; 2; . . . ;m (32)

where �̄ðiÞzp�ðz;oÞ represents the vertical strain of the ith fictitious pile.
Using Eqs. (29), (31) and (32), the Fredholm integral equation in the frequency domain describing the

vertical interaction between the ith pile and the half-space has the form

N̄
ðiÞ

� ðz;oÞ

EðiÞp�A
ðiÞ
þ N̄

ðiÞ

� ðz;oÞ �̄
ðGÞ
z ðrii; z

þ; z;oÞ � �̄ðGÞz ðrii; z
�; z;oÞ

� �
þ
Xm

j¼1

Z Lj

0

N̄
ðjÞ

� ðz;oÞ
q�̄ðGÞz ðrij ; z; z;oÞ

qz
dz

�

�

Z Lj

0

N̄
ðjÞ

� ðz;oÞw̄
ðaÞ
ij ðz; z;oÞ dz� ūðjÞzp�ð0;oÞw̄

ðbÞ
ij ðz;oÞ

�
¼ �̄ðiÞzf ðz;oÞ; i ¼ 1; 2; . . . ;m (33)
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where

w̄ðaÞij ðz; z;oÞ ¼ rðjÞp�o
2=EðjÞp�

� �Z Lj

z
�̄ðGÞz ðrij ; Z; z;oÞ dZ; w̄ðbÞij ðz;oÞ ¼ rðjÞp�A

ðjÞo2

Z Lj

z
�̄ðGÞz ðrij ; Z; z;oÞ dZ (34)

Following the similar procedures, the surface vertical displacement ūzsðx?; z ¼ 0;oÞ for the poroelastic half-
space in the presence of the pile rows can be calculated as follows:

ūzsðx?; 0;oÞ ¼ ūzf ðx?; 0;oÞ þ
Xm

j¼1

�

Z Lj

0

N̄
ðjÞ

� ðz;oÞ
qūðGÞðrx?j ; z; 0;oÞ

qz
dz

�

þrðjÞp�A
ðjÞo2

Z Lj

0

ūðjÞzp�ðz;oÞū
ðGÞðrx?j ; z; 0;oÞ dz

�
(35)

where ū
ðSÞ
zf ðx?; 0; oÞ represents the free field vertical displacement, ūðGÞðrx?j ; z; 0;oÞ denotes the vertical

displacement at the surface point x? ðx? ¼ xiþ yjÞ due to a unit patch load applied at PðjÞx , rx?j is the
horizontal distance between the surface point x? and the axis of the jth pile.

In Eq. (33), the vertical displacement of the ith pile top ūðiÞzp�ð0;oÞ is also unknown. The unknown ūðiÞzp�ð0;oÞ
can be represented by the axial force of the fictitious piles if the vertical displacement of the ith pile top and the
surface vertical displacement of the extended half-space at the center of the ith pile top are assumed to be
equal, i.e., ūðiÞzp�ð0;oÞ ¼ ūðiÞzs ð0;oÞ. Note that ūðiÞzs ð0;oÞ can be obtained via Eq. (35) by setting x? coincide with
the center of the ith pile. Thus, using Eqs. (29) and (35), the following supplementary equations for ūðiÞzp�ð0;oÞ
are derived:

Xm

j¼1

�

Z Lj

0

N̄
ðjÞ

� ðz;oÞ
qūðGÞðrij ; z; 0;oÞ

qz

� �
dzþ

Xm

j¼1

Z Lj

0

N̄
ðjÞ

� ðz;oÞw̄
ðcÞ
ij ðz; 0;oÞ dz

þ
Xm

j¼1

ūðjÞzp�ð0;oÞ w̄
ðdÞ
ij ð0;oÞ � dij

h i
¼ �ū

ðiÞ
zf ð0;oÞ; i ¼ 1; 2; . . . ;m (36)

where dij is the Kronecker delta and

w̄ðcÞij ðz; z;oÞ ¼
rðjÞpj�o

2

E
ðjÞ
pj�

Z Lj

z
ūðGÞðrij ; Z; z;oÞ dZ; w̄ðdÞij ðz;oÞ ¼ rðjÞp�A

ðjÞo2

Z Lj

0

ūðGÞðrij ; Z; z;oÞ dZ (37)
4. Definition of the amplitude reduction ratio

To assess the vibration isolation effect of pile rows, the amplitude reduction ratio Ar at point x?, which is
the ratio between the amplitude of the surface vertical displacement of the half-space in the presence of the pile
rows and that of the free field solution, is defined as follows:

Arðx?; tÞ ¼
uzsðx?; z ¼ 0; tÞ
�� ��
uzf ðx?; z ¼ 0; tÞ
�� �� (38)

where uzsðx?; z ¼ 0; tÞ
�� �� is the amplitude of the vertical displacement of the half-space in the presence of the pile

rows, uzf ðx?; z ¼ 0; tÞ
�� �� is the amplitude of the vertical displacement of the soil given by the free field solution.

Woods [21] proposed an average amplitude reduction ratio Ār for the evaluation of vibration isolation
effect, which is defined as follows:

Ār ¼
1

A

Z
A

Ar dA (39)

where A is the area of a rectangle with its width and length determined by the Rayleigh wavelength and the
width of pile rows.
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5. Numerical results and discussions

The integral equations in the frequency domain accounting for the vertical interaction between pile rows
and the half-space can be solved numerically. The methodology for solving integral equation (33) was detailed
in Ref. [20]. After discretization of Eqs. (33) and (36), the following linear algebraic equations in the frequency
domain are obtained:

AðoÞXðoÞ ¼ bðoÞ (40)

where A(o) is the coefficient matrix determined by discrete integral equations which is associated with the
fundamental solution, b(o) is the right-handed term which is determined by the free field solution, such as,
�̄ðf Þz ðx; y; z;oÞ, and X(o) is the discrete unknowns of the integral equations.

In order to recover the time domain solution, a series of frequency domain solutions at discrete sample
points have to be determined first. Assuming the number of the frequency domain sample points is 2N+1,
then, Eq. (40) for the sample points i ¼ 1; 2; . . . ;N;N þ 1 has the following form:

AðoÞ
��
o¼ði�1ÞDoXðoÞ

��
o¼ði�1ÞDo ¼ bðoÞ

��
o¼ði�1ÞDo; i ¼ 1; 2; . . . ;N;N þ 1 (41)

where Do is the frequency increment for the sample points in the frequency domain and given by

Do ¼
2p
T
; T ¼

2y0

c
(42)

In order to account for the maximum frequency component involved in the response of the pile–soil system
due to the moving load, the time increment has to fulfill the following relation [22]:

Dt ¼
T

2N þ 1
p

p
omax

(43)

where omax is the maximum frequency in the response of the pile–soil system, which can be determined by the
analysis of the free field solution in the frequency domain. Also, the coordinate y0 of the moving load at
the time t ¼ 0 should be large enough to make the period T be able to accommodate the main response of the
concerned domain (e.g., pile rows and the neighboring domain). Note that to avoid the Nyquist component, the
sample points in the frequency domain should be an odd number [23], which is set to be 2N+1 in this study.

According to the property of the discrete Fourier transform [22], A(o) in Eq. (40) for the sample points
i ¼ N þ 2; . . . ; 2N þ 1 is given by the following relation:

½AðoÞ�i ¼ ConjgfAðoÞ
��
o¼½ð2Nþ2Þ�i�Dog; i ¼ N þ 2; . . . ; 2N þ 1 (44)

Due to the vibration frequency o0 of the moving load in Eqs. (13) and (15), the right-handed term b(o) for
the sample points i ¼ N þ 2; . . . ; 2N þ 1 should be determined by the following equation:

½bðoÞ�i ¼ bðoÞ
��
o¼�½ð2Nþ2Þ�i�Do; i ¼ N þ 2; . . . ; 2N þ 1 (45)

After numerical solution of the integral equation (33) for the sample points i ¼ 1; 2; . . . ; N þ 1; N þ 2; . . . ;
2N þ 1, all the variables in the frequency domain are obtained. The time domain solution for the variables
can be obtained by performing inverse Fourier transform on the corresponding frequency domain solutions,
which is implemented by the FFT method in this study [22].

In the numerical examples, we use a single pile row of 10 piles with the circular cross-section as a passive
isolation vibration facility. The load moves along a line parallel to the y-axis in the positive y direction. Each
pile has the same diameter d, the same length L, the same Young’s modulus Ep and the same density rp. The
material parameters for the poroelastic half-space are given as follows: m ¼ 1:32� 108 N=m2, l ¼ 1:32�
108 N=m2, M ¼ 1:0� 1011 N=m2, rs ¼ 2:0� 103 kg=m3, rf ¼ 1:0� 103 kg=m3, f ¼ 0.4, a ¼ 0.97, bp ¼ 1:9�
107 kg=m3s, aN ¼ 3.0.

In calculation, when evaluating Eq. (39), the Rayleigh wave wavelength needs to be determined in advance.
In this study, the Rayleigh wave wavelength in Eq. (39) is assumed to be the Rayleigh wave of an elastic
medium, and the frequency of the Rayleigh wave is equal to the oscillating frequency of the moving load (o0).
Also, the elastic medium assumes the same material parameters as the solid skeleton of the porous medium.
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For example, when f ¼ 50Hz, m ¼ 1:32� 108 N=m2, l ¼ 1:32� 108 N=m2, r ¼ 2:0� 103 kg=m3, the Rayleigh
wave wavelength takes lR ¼ 5.0m.

To verify our method, in Section 5.1, a special case of the present paper is compared with some known
results. In Sections 5.2–5.5, some numerical examples and corresponding analysis are presented.

5.1. Comparison of our results with known results

In this section, the method developed in this study is justified by comparing results of this research with
existing results. As shown in Fig. 1, the vibration source is a vertical moving distributed load moving parallelly
to the y-axis at a constant speed c. The magnitude of the load is 100 kN and its vibration frequency is
f ¼ 50Hz. The moving load is uniformly distributed over a rectangle with 2a� 2b ¼ 0.8m. A single pile row
with 10 piles with circular cross-section is used as the passive isolation vibration system. Each pile has the same
diameter d ¼ 1.0m, the same length L ¼ 5.0m, the same Young’s modulus Ep ¼ 3:3� 1010 N=m2 and the
same density rp ¼ 2:4� 103 kg=m3. The net spacing between two neighboring piles is s ¼ 0.5m. The distance
between the y-axis and the trace of the load is ds ¼ 7.5m.
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Fig. 4. The contour of the amplitude reduction ratio Ar for a single pile row with ten circular cross-section piles as passive vibration

isolation system embedded in (a) the single-phase elastic medium and (b) the poroelastic medium.
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Kattis et al. [5] gave the vibration isolation effect of pile rows embedded in an elastic half-space against a
harmonic vertical force. To compare results of current study with Kattis’, the parameters M, aN, a, bp, f, rf

for the poroelastic half-space are assumed to tend to zero, then, the poroelastic half-space is reduced to a
quasi-elastic half-space.

It should be noted that for an elastic medium there are singularities in the path of the integration when
calculating the fundamental solution, which makes the numerical evaluation of the integral a formidable task.
However, some researchers tend to evaluate integrals of this sort using a viscoelastic model. In the viscoelastic
model, the material damping is taken into account using complex Lame constants i.e., m ¼ m0(1+ibs) and
l ¼ l0(1+ibs), where bs denotes the damping ratio. In this paper, we use a damping ratio of bs ¼ 0.05 for the
soil and m0 ¼ 1:32� 108 N=m2, l0 ¼ 1:32� 108 N=m2, rs ¼ 2:0� 103 kg=m3.

Moreover, if the velocity of the vertical moving distributed load approaches zero, the moving vibration load
is reduced to a fixed time-harmonic force. In calculation, the wavelength for the Rayleigh wave of the reduced
elastic medium is lR ¼ 5.0m.

According to the proposed method, the average amplitude reduction ratio Ār of the ten-pile row embedded
in the quasi-elastic medium is 0.6212 when the moving load with velocity c ¼ 0.001m/s is located at the point
(x, y, z) ¼ (�7.5, 0, 0m), while the result of Kattis et al. [5] is 0.624, the difference of which is 0.45%.

Moreover, according to our method, the amplitude reduction ratio Ar for the case of the moving load
located at the point (x, y, z) ¼ (�7.5, 0, 0m) for the reduced elastic medium and the poroelastic medium are
also shown in Fig. 4(a) and (b), respectively. The average amplitude reduction ratio for the poroelastic half-
space is Ār ¼ 0:595. Thus, we can see that that for the same pile row and the same vibration source, the
vibration isolation effect of the poroelastic medium is better than that for the single-phase elastic medium.

Fig. 5 shows that the amplitude reduction ratio Ar along 0px=lRp2 when the moving load located at the
point (x, y, z) ¼ (�7.5, 0, 0m) for the elastic and the poroelastic half-space. Note that x ¼ 0 represents the
y-axis which passing through the centers of the piles’ top (Fig. 1). It can be observed that the amplitude
reduction ratio Ar right behind the pile row is larger than that at other areas for both media. For the case of
the pile row in the poroelastic half-space, the minimum amplitude reduction ratio Ar ¼ 0.3644 occurs at the
distance of x/lR ¼ 1.05, while for the elastic half-space, the minimum amplitude reduction ratio Ar ¼ 0.4141
occurs at the distance of x/lR ¼ 0.85.

5.2. Effects of the velocity of the moving load

In this section, the influences of the velocity of the moving load (c) on the vibration isolation effect will be
examined. The vibration source is a point load with the magnitude of Fz ¼ 100 kN. The point load moves
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single pile row with ten circular cross-section piles embedded in the elastic half-space and the poroelastic half-space.
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along a line parallel to the y-axis at a constant speed c and its vibration frequency is f ¼ 50Hz. As previously,
a single pile row with ten piles is used as the passive vibration isolation system. Thus, the number of pile rows
is K ¼ 1 and the number of piles in the pile row is n1 ¼ 10. Each pile has a circular cross-section and has the
same diameter d ¼ 1.0m, the same length L ¼ 5.0m, the same Young’s modulus Ep ¼ 3:3� 1010 N=m2 and
the same density rp ¼ 2:4� 103 kg=m3. The net spacing between two neighboring piles is s ¼ 0.5m. The
distance between the y-axis and the trace of the load is ds ¼ 7.5m. Three different moving load velocities
c ¼ 0.2nSH, c ¼ 0.5nSH and c ¼ 0.7nSH are considered, where vSH ¼

ffiffiffiffiffiffiffiffi
m=r

p
.

Fig. 6(a)–(c) illustrates the variation of the amplitude reduction ratio Ar on the surface at the instant when
the moving load with speed c ¼ 0.2nSH, 0.5nSH and 0.7nSH, respectively, is located at the point
(x, y, z) ¼ (�7.5, 0, 0m). The variation of the amplitude reduction ratio Ar along 0px=lRp2, y ¼ 0 for the
moving load located at the point (x, y, z) ¼ (�7.5, 0, 0m) with different velocities c ¼ 0.2nSH, c ¼ 0.5nSH and
c ¼ 0.7nSH is also shown in Fig. 7.

From Figs. 6 and 7, one can see that moving load speed has some influence on the minimum amplitude
reduction ratio Ar. For the case of c ¼ 0.001m/s, Ār ¼ 0:595 and the minimum amplitude reduction ratio
Ar ¼ 0.3644 occur at x/lR ¼ 1.05; for the case of c ¼ 0.2nSH, Ār ¼ 0:6119 and the minimum amplitude
reduction ratio Ar ¼ 0.3876 occurs at x/RL ¼ 0.95; for the case of c ¼ 0.5nSH, Ār ¼ 0:6624 and the minimum
amplitude reduction ratio Ar ¼ 0.4352 occurs at x/lR ¼ 1.01; for the case of c ¼ 0.7nSH, Ār ¼ 0:6985 and the
minimum amplitude reduction ratio Ar ¼ 0.4628 occurs at x/lR ¼ 0.9. Also, it follows from the above
numerical results that the average amplitude reduction ratio Ār increases considerably with increasing moving
load velocity.

Moreover, one can see from Figs. 8(a) to (c) that the amplitude reduction ratio at the instant when the
moving load is located at the point (x, y, z) ¼ (�7.5, 0, 0m) becomes a little asymmetrical with respect to the
x-axis with increasing speed: for the case of c ¼ 0.7nSH, the vibration isolation effect at points y/RL ¼ 0.2, 0.4
is less pronounced than that at points y/RL ¼ �0.2, �0.4, respectively. However, this phenomena does not
occur for the cases of c ¼ 0.2nSH and c ¼ 0.5nSH.

5.3. Effects of Young’s modulus (Ep) of the pile

Young’s modulus (Ep) of the pile is an important parameter for the design of the pile-row vibration isolation
system. Herein, the influence of Young’s modulus of piles on the vibration isolation effect is investigated for
different moving load speeds. In this example, the vibration source and the pile row are the same as those in
Section 5.2. Thus, the parameters for the moving point load and the pile row assume the same values as those
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in Section 5.2 except that Young’s modulus of the piles takes four different values: Ep/Es ¼ 15, 35, 100 and
200, respectively, where Es ¼ mð3lþ 2mÞ=ðlþ mÞ. For each Young’s modulus, three different values of speeds
c ¼ 0.2nSH, 0.5nSH and 0.7nSH are considered with vSH ¼

ffiffiffiffiffiffiffiffi
m=r

p
.

Fig. 9(a)–(c) shows the variation of the amplitude reduction ratio Ar on the surface of the poroelastic half-
space for the three cases of Ep/Es ¼ 15, 35, 100 and 200 when the moving load located at the point
(x, y, z) ¼ (�7.5, 0, 0m) with speed c ¼ 0.2nSH, 0.5nSH and 0.7nSH, respectively. One can see that the minimum
amplitude reduction ratio Ar occurs at almost the same location despite the variation of Young’s modulus (Ep)
of the pile for all the moving load speeds.

Fig. 10 shows the influence of Young’s modulus ratio of Ep/Es on the average amplitude reduction ratio Ār

when the moving load located at the point (x, y, z) ¼ (�7.5, 0, 0m) for the cases of the speed c ¼ 0.2nSH, 0.5nSH
and 0.7nSH, respectively. One can see that the average amplitude reduction ratio Ār decreases with increasing
Ep/Es for all the speeds, which suggests that stiffer pile row has a better vibration isolation effect. Moreover,
one can see that the influence of Young’s modulus (Ep) of the pile on the vibration isolation effect depends on
the velocity of the moving load. When Ep/Es increases from Ep/Es ¼ 15–200, the average amplitude reduction
ratio Ār for the cases of c ¼ 0.2nSH, 0.5nSH and 0.7nSH decrease by 12.7216%, 16.8052%, 22.0283%,
respectively, which indicates that for high-speed moving loads, stiffer piles are preferable for vibration
isolation purpose.

5.4. Effect of the length of the piles

The influence of the length of the piles on the vibration isolation effect for different moving load speed is
examined in this section. As previously, in this example, the same ten-pile row embedded in the poroelastic
half-space is used to isolate the vibration due to the harmonic moving load. Also, the parameters for the
moving point load and the pile row take the same values as those in Section 6.2 except that the pile length
takes the following values: L ¼ 5.0, 10.0, 20.0 and 50.0m, respectively. For each pile length, three different
values of moving load speeds c ¼ 0.2nSH, 0.5nSH and 0.7nSH, respectively, will be calculated, where
vSH ¼

ffiffiffiffiffiffiffiffi
m=r

p
.

Fig. 11(a)–(c) shows the variation of the amplitude reduction ratio Ar along 0px=lRp2, y ¼ 0 for different
values of L ¼ 10.0, 20.0 and 50.0m when the moving load located at the point (x, y, z) ¼ (�7.5, 0, 0m) for the
three cases of speed c ¼ 0.2nSH, 0.5nSH and ¼ 0.7nSH, respectively. Fig. 12 plots the influence of the pile length
on the average amplitude reduction ratio Ār at the instant when the moving load is at the point
(x, y, z) ¼ (�7.5, 0, 0m) for the load speed c ¼ 0.2nSH, 0.5nSH and 0.7nSH, respectively.
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It can be seen from Fig. 12 that the length of piles affects the average amplitude reduction ratio Ār to some
extent. However, Ār only increases slightly when L/lR is larger than a certain value. For example, when the
moving load velocity c ¼ 0.2nSH, the influence of pile length on the vibration isolation effect is very little when
L/lR is greater than 3.0. Consequently, the optimal length of piles is around 3.0RL for the speed c ¼ 0.2nSH.
For the case of c ¼ 0.5nSH and c ¼ 0.7nSH, when the length of the pile L/lR is larger than 2.0, the influence of
the length of piles becomes less. Thus, for these speeds, the optimal length of piles is around 2.0RL. Obviously,
the Rayleigh wave accounts for the major part of the energy of the waves propagating near the surface of the
half-space. It is well known that the Rayleigh wave is confined near the surface. Thus, if the pile bottoms are
beyond the influence domain of the Rayleigh waves, the pile length will makes no difference on the vibration
isolation effect of the pile row, which is consistent with the finding in Ref. [13].

5.5. Effect of pile net spacing

The net spacing (s) between neighboring piles in a pile row is an important parameter for the design of
vibration isolation by pile rows. In this section, it is assumed that the parameters for the piles and the moving
point load take the same values as those of Section 6.2, while value of pile net spacing s takes the values 0.5,
1.0 and 2.0m, respectively. For each pile net spacing s, three different values of the load speed c ¼ 0.2nSH,
0.5nSH and ¼ 0.7nSH, respectively, are considered where vSH ¼

ffiffiffiffiffiffiffiffi
m=r

p
.

Fig. 13(a)–(c) gives the variation of the amplitude reduction ratio Ar along 0px=RLp2, y ¼ 0 for s ¼ 0.5,
1.0 and 2.0m at the instant when the moving load is at the point (x, y, z) ¼ (�7.5, 0, 0m) with velocity
c ¼ 0.2nSH, 0.5nSH and ¼ 0.7nSH, respectively. Fig. 14 plots the variation of the average amplitude reduction
ratio Ār versus the pile net spacing s for the cases of the load speed c ¼ 0.2nSH, 0.5nSH and ¼ 0.7nSH,
respectively, when the moving load is located at the point (x, y, z) ¼ (�7.5, 0, 0m).

Fig. 14 shows that the average amplitude reduction ratio Ār has appreciable increment when the net spacing s

increases, which clearly shows that with increasing net spacing s, the vibration reduction effect of the pile row
reduces considerably. Generally, smaller separation between piles will produce a better vibration reduction
effect. Also, Fig. 14 illustrates that the influence of the net spacing on the vibration isolation effect for high-speed
cases is more pronounced than that for lower speed cases.

6. Conclusions

The numerical simulation of the isolation of the vibration by pile rows has been carried out in this study.
The semi-analytical nature of the proposed method avoids the discretization of the whole calculation domain,
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and thus it reduces the CPU time for the current problem substantially. Also, to verify the proposed method,
results of this study were compared with known results. Numerical results show that our solution is in a good
agreement with existing results.

To study the vibration isolation effect, the influences of the moving load speed, Young’s modulus of the pile,
the pile length and the spacing between piles have been investigated. Based on the numerical simulations
performed in this study, following conclusions can be drawn:
(1)
 The same pile rows can achieve better vibration isolation effect for lower speed loads than for higher speed
loads. Moreover, for the same pile rows and the vibration source, the poroelastic medium often leads to a
better vibration isolation effect than the single-phase elastic medium does.
(2)
 Young’s modulus of the pile is an important parameter affecting the vibration isolation effect. Increase of
Young’s modulus of the pile will enhance the vibration isolation effect.
(3)
 Pile length is also an important factor affecting the vibration isolation effect. Generally, the pile rows with
longer pile length will have a better vibration isolation effect than those with shorter pile length. The
optimal length of piles for high-speed loads is shorter than that for lower speed loads. For example,
according to our calculations, the recommended optimal lengths for piles are 3.0lR, 2.0lR, for c ¼ 0.2nSH
and 0.7nSH, respectively, in which lR is the wavelength of the Rayleigh wave.
(4)
 The net spacing between neighboring piles is crucial for the vibration isolation effect. Generally, to obtain
a better vibration isolation effect for high-speed loads, the net spacing should take smaller values.
Acknowledgments

This research is carried out in the framework of the project from the National Natural Science Foundation
of China with Grant no. 50578071. Also, the research is supported by the returned oversea scholar funding
from Chinese Education Ministry. Moreover, the financial support from Shanghai Leading Academic
Discipline Project with Project no. B208 is greatly appreciated.

References

[1] K. Emad, G.D. Manolis, Shallow trenches and propagation of surface waves, Journal of Engineering Mechanics—ASCE 111 (1985)

279–282.

[2] D.E. Beskos, G. Dasgupta, I.G. Vardoulakis, Vibration isolation using open or filled trench—part 1: 2-D homogeneous,

Computational Mechanics 1 (1986) 43–63.

[3] B. Dasgupta, D.E. Beskos, I.G. Vordouclakis, Vibration isolation using open or filled trenches—part 2: 3-D homogeneous soil,

Computational Mechanics 6 (1990) 129–142.



ARTICLE IN PRESS
J.-F. Lu et al. / Journal of Sound and Vibration 319 (2009) 940–962962
[4] J. Avilles, F.J. Sanchez-Sesma, Foundation isolation from vibration using piles as barriers, Journal of Engineering Mechanics—ASCE

114 (1988) 1854–1870.

[5] S.E. Kattis, D. Polyzos, D.E. Beskos, Modelling of pile wave barriers by effective trenches and their screening effectiveness, Soil

Dynamics and Earthquake Engineering 18 (1999) 1–10.

[6] S.E. Kattis, D. Polyzos, D.E. Beskos, Vibration isolation by a row of piles using a 3-D frequency domain BEM, International Journal

for Numerical Methods in Engineering 46 (1999) 713–728.

[7] P.H. Tsai, Y.F. Zheng, T.L. Jen, Three-dimensional analysis of the screening effectiveness of hollow pile barriers for foundation-

induced vertical vibration, Computers and Geotechnics 35 (2008) 489–499.

[8] M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range, Journal of the Acoustical

Society of America 28 (1956) 168–178.

[9] M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II: Higher frequency range, Journal of the

Acoustical Society of America 28 (1956) 179–191.

[10] M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Psychology 33 (1962) 1482–1498.

[11] X. Zeng, R.K.N.D. Rajapakse, Dynamic axial load transfer from elastic pile to poroelastic medium, Journal of Engineering Mechanics

125 (1999) 1048–1055.

[12] J.H. Wang, X.L. Zhou, J.F. Lu, Dynamic response of pile groups embedded in a poroelastic medium, Soil Dynamics and Earthquake

Engineering 23 (2003) 235–242.

[13] B. Jin, Z. Zhong, Lateral dynamic compliance of pile embedded in poroelastic half space, Soil Dynamic and Earthquake Engineering

21 (2001) 519–525.

[14] R. Muki, E. Sternberg, On the diffusion of an axial load from an infinite cylindrical pile embedded in an elastic medium, International

Journal of Solids and Structures 5 (1969) 587–606.

[15] R. Muki, E. Sternberg, Elastostatic load transfer to a half space from a partially embedded axially loaded rod, International Journal of

Solids and Structures 6 (1970) 69–90.

[16] I.N. Sneddon, Fourier Transforms, McGraw-Hill, New York, NY, 1951.

[17] J.F. Lu, D.S. Jeng, A half-space saturated poro-elastic medium subjected to a moving point load, International Journal of Solids and

Structures 44 (2007) 573–586.

[18] J.F. Lu, D.S. Jeng, W.D. Nie, Dynamic response of a pile embedded in a porous medium and subjected to plane SH waves,

Computers and Geotechnics 33 (2006) 404–418.

[19] M.R. Halpern, P. Christiano, Steady-state harmonic response of a rigid plate bearing on a liquid-saturated poroelastic halfspace,

Earthquake Engineering and Structural Dynamics 14 (1986) 439–454.

[20] R.Y. Pak, P.C. Jennings, Elastic dynamic response of pile under transverse excitations, Journal of Engineering Mechanics Division—

ASCE 113 (1987) 1101–1116.

[21] R.D. Woods, Screening of surface waves in soil, Journal of Soil Mechanics and Foundation Engineering—ASCE 94 (SM4) (1968)

951–979.

[22] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1999, pp. 514–580.

[23] J.M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, and Porous Media, Pergamon, Amsterdam,

2001.


	Numerical analysis of isolation of the vibration due to moving loads using pile rows
	Introduction
	The free wave field solution and the fundamental solution for a circular uniform patch load
	Biot’s theory
	Free wave field solution due to the moving loads
	The fundamental solution for a harmonic circular uniform patch load

	Fredholm integral equations describing dynamic interaction between piles and the poroelastic half-space
	Definition of the amplitude reduction ratio
	Numerical results and discussions
	Comparison of our results with known results
	Effects of the velocity of the moving load
	Effects of Young’s modulus (Ep) of the pile
	Effect of the length of the piles
	Effect of pile net spacing

	Conclusions
	Acknowledgments
	References


